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Best Approximation of Positive Power Series 

By B. L. R. Shawyer* 

Abstract. This paper extends work of Fiedler, Jurkat and the present author to series of the 
form La x ' where {a,,} is a moment sequence and 0 < x < 1. In the cases where it is 
possible to calculate it exactly, we find the best LP approximation to the sum of the series and 
the actual terms of the matrices involved. We have an advantage over accelerators commonly 
used for accelerating convergence in that we know explicitly the errors in our calculations. 

1. Introduction. In recent papers, Jurkat and Shawyer [3], Fiedler and Jurkat [2] 
and Shawyer [4] have considered the problem of the best approximation to the sum 
of convergent series of the form L (-l)nanx) n with 0 < x < 1, obtained from the 
first (n + 1) terms of the series, where { an } is a moment sequence with 

an =f tndo and j dol= 1. 

In this paper, we consider series of the form L an Xn with 0 < x < 1, where an is as 
above. The results obtained here are similar to those in [4]. 

We show the best approximation explicitly for the cases in which it can be 
calculated. In particular, in the notation of [4], we show that the error of the best L' 
approximation is given by 

= x/2 1-- 1- 
En ( 2(1 - )x x 

From this we observe that it is not appropriate to let x -- 1 - since the factor 
x/2(1 - x) tends to infinity and (2/x - 1 - 2 1 - x /x) tends to 1. 

The matrices obtained are not regular on the class of convergent series but are 
regular on the subclass considered. 

Let C = 
(cn,k) be a series-to-sequence triangular matrix, so that Cn,k = 0 whenever 

k > n. Define, for 0 < x < 1, 
11 n 

an =L Cnf kak X and Yn ( t L Cn, k t 

k=O k=O 

Thus 

a=n 1 Cnk k(Xt) do(t) = f yn(xt) d(p. 
k=O0 
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Also 

L akX 
k = 

L 5 
(xt) kd+(t) xt () + rn 

k=O 0k=O1 t ' 

where 

xn= f+l It_ tdo(t) O asn > o. 

Define 

S(W) 1 d4(t) 

so that 

an-S(X) =f | ( X(Xt) 1 Xt) d+(t) 

and so 

Ian-s(x)| < omax |Yn(Xt) -xt f1 i 

Considering without loss of generality, the class in which fO 1k(t) I dt = 1 and taking 
the supremum over this class, we obtain that 

supIan - s(x) max |Yn (Xt - 1 | 7(xt) 1 - xt 11 

For the subclasses given by JJ 4,(t)1q dt = 1 (l/p + l/q = 1) we obtain that 

Suplkn - Sx) (jiYn (Xt) )-1 t dt ) =IIYn (Xt0)-ilit 

Thus we define the error for the row of order n of the matrix C, operating on the 
first (n + 1) terms of the series in our class to be 

En (C) = yn(xt) - 1t (1 < p < oo), 

where the norm is taken with respect to t over the interval [0, 1]. For each n, the best 
approximation occurs when this error is minimal. So we let yn vary over the class of 
polynomials of degree n. 

As in [3], let B = (bn,k) be the corresponding sequence-to-sequence matrix and 
f3n(t), its row polynomial, so that 

tl3n(t) = yn (0) + (1 -t)yn(t) 

2. Solution to the Problem When p = o0. To find the best approximation, we must 
minimize the error 

n )(C) = 
y(xt) --|1 xt ma 

L1 
| (2( IY2 ) v (2/x ) 

We must therefore apply Ceby'sev's lemma (Lemma 2.1 in [3]) with a = 2/x - 1 to 
find the corresponding best polynomial, pn(t) approximation to 1/(v - a). We then 
set t = 2a/x - 1 and multiply by - 2/x. 



BEST APPROXIMATION OF POSITIVE POWER SERIES 531 

The number a in Ceby'sev's lemma is taken then 

2 222 - x- 211-~x 
a = a(x) = \/( ) 1 - - - 1 1 = < 1 forO < x < 1. 

Let a(l) = 1 and a(O) = 0 (by continuity). It is easy to see that a(x) x/4 as 
x -O 0 + . We then obtain that 

_2 {a(x)} 
n 

=X ax y En (C) =x *2 2(1 - x) {() 

We now follow the development as in [4] and [3] to obtain -yo(u)= x/2(1 - x) 
and, for n > 0, 

u-1 {8( -x ) x) ) 
where 

Wn+l(t) =a( x) n+1(t)-12Tn(t) + a(x)Tn-j(t) 

and Tn(t) is the CebyBev polynomial of order n. Now 

Wn+l(-1) = Tn+l(-1)-2T7(-1) + a(x)Tn-,(-1) 

= (_)n+{ + 2 + a(x) 

so that 

{a(x)} 
X2Wn+l(_1) 

1 + _1)n {a(x)} x2 Yn(O) 1 8(1 -x) 2(1 - x) 

-1 as n - oofor each x e (O, 1). 
Noting that 

=(-1)_n(u) and Tn(l + 2v) (n+- 1) (4v)k i~(-u=(-i~~() and1~(12v)-k.0 (n - k)!2k! 
(see [3]), we obtain 

2u n 
~~n(n +k -1)!(_ 4 kk 

( X ) k=O (n - k)!2k! x) 
so that Wn+1(2u/x - 1) can be obtained explicitly as a polynomial in u. Using this 
and tI3n(t) = yn(O) + (1 - t)yn(t), we obtain that for 0 < k < n 

b(o)- {a(x)} fx2(-1)n+k 
4k+1 (n + k - 1)! n,k 8(1 - X)Xk+l \ (2k + 2)!(n - k)! J 

{(n + 1)(n + 1 + k)(n + k) + 2(2 - k2) 

+a(x)(n - 1)(n - 1 - k)(n - k)} 

{a(x)In(_ 1)n+k22k-1(n + k - 1)! (1= - x)xkl(2k + 2)!(n - n' a 
(1 - X)Xk-l(k- 4+ 2)!(n - k-)! n,kS 
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say, where 

a(?= (ni$j) {k2 + k(2n + 1) + n(n + 1)) + 2n(n2 + k2) 

+a(x)(n - 1){k2 - k(2n - 1) + n(n - 1)) 

k n a{(> 2 + a(x)) +((1) - a(x))} 

+k{(2n2 - 1)< - a(x)) + 3n(ax)+ a(x)) 

+ (n 
n 

)2 + 2n2 + a(x)(u - 1)2} > 0 

since 

1 1 _ _ 

a(x) -a(x)>0 and a(x) +a(x) (x) (x) >0. 

Thus bn?oo) = (-1)nkn(ok)q say, where fin(?k?) > 0 n,k n,k 

We have already noted that 
n 

E bn = yn (? ) 1 as n > x . 
k=O 

It is easy to show that 
lim bNO) = 0 for each k and for each x. 

We thus have the row sum and column limit conditions of Toeplitz's Theorem. 
However we shall see below that the row norm condition is not satisfied. We thus 
have a positive nonregular triangular matrix. It is, however, regular for our class. 

To see this, we observe that 
n 

_ {(X)}fnl22k1 (n_? k - 1)! (o 

k=O 
n,k 

k=O (1 )xk-1(2k + 2)!(n - k)! 

a {a(x)} Ix2 [Tn1+?(1 + 2/x) 
8(1-x) a o(x) 

+2Tn1( + 2) + a(X)Tn-1(1 + 2) A] 

(This is readily obtained by starting with the right-hand side and proceeding as with 
the treatment above.) From Tn(u) = 2{(U - - 1 )n + (U + u2 - 1 )nl} we 
obtain that 

Tn + 2) = 2{{;(X)}n +{;(x)}n} 

where A(x) = (2 + x - 21 + x )/x. It is easy to see that a(x) > A(x) > 0 for 
0 <x < 1 so that {a(x)/A(x)}jn - o as n -x oo for each x e (0,1). Hence 

kO n) oo asn -x oo for eachx e (0,1). 

3. Solution to the Problem When p = 1. It is possible to solve this problem 
explicitly when p = 2 using the techniques developed in [4]. For the sake of brevity, 
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we shall omit this here and merely state that the corresponding best matrix 
B(2) = (ba2) ) has similar properties to the matrix B(?) found above and the matrix 
B(1) found below. 

In the case of p = 1, we follow the procedure of Section 4 of [4] and obtain that 
the error in the approximation is given by 

En(C)= yn(xu)- 1 
I 

= | Iy(xu)- du 

fl ;|_X (x(1 + v1)))_ 1 |d iCn-Y 1x) -x -(U 

p(V)I- I I xdv, say, 
xJ v- a 

where a = 2/x - 1 > 1. 
Applying Markov's Theorem [1, p. 82] as in [4], we obtain that 

E1) (C) =-log I{a(x)}n+2 

It is easy to show that, for t > 0, 

lo(+t) t +t+ I t + 

We use this inequality with t = (1 - { a(x)}ln2)/2{ a(x)}ln2 and obtain 

e(l)(C) < 4 {a(x) n+2 1+ a(x)} 2n4 4 ?2a(x) + { a(x )4. (C x a(x)} i2?41 { 
a(ax)} )4 

It is now easy to obtain that 
c57(C) < ~()8 2 

a(x)n} 2. 

x(1 -{ a(x)) ) 

Following the procedure of Section 4 of [4], we obtain that 

yn(t) - t Un+1 ( x- 1 )/Un+( - I 

where UL(v) is the Cebysev polynomial of the second kind of degree n. Using this 
expression for yn(t) and tI3n(t) = yn(O) - (1 - t)yn(t), we obtain that the entries of 
the corresponding matrix B(1) are given by 

= 

1 (_1)nl+k 4k+i (O < k n) 
bn,k xk+1U (2/X - 1) (n - k? ) 

=0 (n > k). 

The row sum is now yn(O) = 1 - Un+(- 1)/Un +(2/x - 1). From 

Tn(u) = 2 {(u + _u21) (u 21 )n} and nUnL(u) = Tn(u), 

we obtain that 

2 1 {(U + i U- 21)n+l(U- U2 ~l)n+l}. 
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Thus 

Un 
( 2 _ 4 (I{ a(x)) -n 2 {(X)} n+2) 

It now follows that En= b(l)> 1 as n -- ox. It is also easy to obtain that 
lim 0 bn() = 0 for each k and for each x. A procedure similar to that in Section 2 
above shows that limn -o Lk =Olbk + x, so that the matrix B(1) is not regular. 

4. Numerical Considerations. Smith and Ford [5], [6] have done considerable 
numerical investigations to compare various accelerators. In particular, in Section 7 
of [5], they reported on two series which are members of the class considered in this 
paper. See Tables 7.2 and 7.3 of [5]. The corresponding moment sequences { an } are 
given by 

an = (0.5)n + I1 and an = 1/(n + 1) 

withx = 0.8. 
With all the convergence accelerators tested by Smith and Ford, there are no 

general results giving the errors in the approximations. In the work of this paper and 
in [2], [3], and [4], all the errors are known, and the accuracy of the approximations 
is guaranteed. 

We also point out that the matrices involved are very "nice". In the L' case we 
have rational functions and 1 - x . In the L1 case, we have rational functions alone. 
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